Diverse synaptic mechanisms generate direction selectivity in the rabbit retina.
نویسندگان
چکیده
The synaptic conductance of the On-Off direction-selective ganglion cells was measured during visual stimulation to determine whether the direction selectivity is a property of the circuitry presynaptic to the ganglion cells or is generated by postsynaptic interaction of excitatory and inhibitory inputs. Three synaptic asymmetries were identified that contribute to the generation of direction-selective responses: (1) a presynaptic mechanism producing stronger excitation in the preferred direction, (2) a presynaptic mechanism producing stronger inhibition in the opposite direction, and (3) postsynaptic interaction of excitation with spatially offset inhibition. Although the on- and off-responses showed the same directional tuning, the off-response was generated by all three mechanisms, whereas the on-response was generated primarily by the two presynaptic mechanisms. The results indicate that, within a single neuron, different strategies are used within distinct dendritic arbors to accomplish the same neural computation.
منابع مشابه
Orientation selectivity in rabbit retinal ganglion cells is mediated by presynaptic inhibition.
Cells sensitive to the orientation of edges are ubiquitous in visual systems, and have been described in the vertebrate retina, yet the synaptic mechanisms that generate orientation selectivity in the retina are largely unknown. Here, we analyze the synaptic mechanisms that generate selective responses to vertically and horizontally oriented stimuli in rabbit retinal ganglion cells. The data in...
متن کاملConditional Knock-Out of Vesicular GABA Transporter Gene from Starburst Amacrine Cells Reveals the Contributions of Multiple Synaptic Mechanisms Underlying Direction Selectivity in the Retina.
Direction selectivity of direction-selective ganglion cells (DSGCs) in the retina results from patterned excitatory and inhibitory inputs onto DSGCs during motion stimuli. The inhibitory inputs onto DSGCs are directionally tuned to the antipreferred (null) direction and therefore potently suppress spiking during motion in the null direction. However, whether direction-selective inhibition is in...
متن کاملCellular Mechanisms for Direction Selectivity in the Retina
Direction selectivity represents a fundamental computation found across multiple sensory systems. In the mammalian visual system, direction selectivity appears first in the retina, where excitatory and inhibitory interneurons release neurotransmitter most rapidly during movement in a preferred direction. Two parallel sets of interneuron signals are integrated by a direction-selective ganglion c...
متن کاملPhysiological properties of direction-selective ganglion cells in early postnatal and adult mouse retina.
Selective responses of retinal ganglion cells (RGCs) to the direction of motion have been recorded extracellularly from the rabbit and the mouse retina at eye opening. Recently, it has been shown that the development of this circuitry is light independent. Using whole-cell patch clamp recording, we report here that mouse early postnatal direction-selective ganglion cells (DSGCs) showed lower me...
متن کاملStimulus-dependent recruitment of lateral inhibition underlies retinal direction selectivity
The dendrites of starburst amacrine cells (SACs) in the mammalian retina are preferentially activated by motion in the centrifugal direction, a property that is important for generating direction selectivity in direction selective ganglion cells (DSGCs). A candidate mechanism underlying the centrifugal direction selectivity of SAC dendrites is synaptic inhibition onto SACs. Here we disrupted th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 22 17 شماره
صفحات -
تاریخ انتشار 2002